
SALES PRICE PREDICTION
GROUP:CS567_MINREGRESSOR

04-29-2020FINAL PROJECT PRESENTATION

DIGBALAY BOSE

SOUVIK KUNDU



Pre-processing

1.Selecting those train entries with item_price > 0(dropping entries 
with item_price <0 )

2.Removing those train entries whose item_cnt_day are negative

3.Merging shop entries in training data by shop id whose shop 
names are same.

4.Splitting the shop name information into shop category and 
shop city for each shop id.

5. Splitting item category name into two item category based 
codes(type and subtype) and combining with item_category_id .

6. Splitting item name information into item name and item type.



Feature Generation

Generate all item-shop 
pair

Monthly average based
features

Lag feature generation 
scheme (for current 
month add average 
feature information 

from previous 
months)

Generated lag 
features

To have a notion 
of sales in prior 

time steps

Train data

For each month 
generate (item-
id-shop-id pair)

Generate monthly 
average features

E.g. Item_id wise monthly 
average item count, Shop id 
wise monthly average count, 
Shop city monthly aggregate 

etc.

Generate 
trend



What Did Not Work?

MLP

Major steps:
1. Architecture choice
2. Loss function
3. Pre-processing

Possible failure reason:
1. Incorrect normalization
2. Mixture of int and float type 

features
3. Activation and loss selection

SVR
Possible failure reason:
1. Choice of kernel
2. Too time consuming

Major steps:
Used scikit learn SVR package



Training Models

XGBoost

Random
Forest

Light GBM

Naive

Fine tuned

Naive

Fine tuned

Naive

Fine tuned

XGBoost

Random
Forest

+

a

1-a

XGBoost

Random
Forest

a

b

Light
GBM

+

1-(a+b)

Light
GBM

Random
Forest

+

a

1-a

Stand-alone models Ensemble models

• Faster training
• Lower memory
• Better accuracy

• Less prone to 
overfitting

• Lesser 
hyperparameters 

to tune than 
xgboost

• Parallelizable 
algorithm.
• More 

hyperparameters 
to tune 



RESULTS

• Validation data: Entries from month 33
• Test data: Entries from month 34
• Hyperparameter tuning using grid search and hyperopt (https://github.com/hyperopt/hyperopt)

Model name Validation RMSE Leader-board score

Xgboost

xgboost-naive(xgb-n) 0.898755 0.9075

xgboost-grid search(xgb-gs) 0.892129 0.89044

xgboost-hyperopt tuning(xgb-hy_tun) 0.891743 -

Random Forest

Random Forest-naive(rf-n) 0.896694 0.88198

Random Forest-grid search(rf-gs) 0.89587 0.87957

Light GBM

Light GBM - naive (lgbm-n) 0.904814 -
Light GBM-grid seacrh(lgbm-gs) 0.88636 -

Light GBM (lgbm-hy_tun) 0.8823 -

Weighted Ensemble

0.5*(xgb-hy_tun)+0.5*(rf-gs) 0.887585 0.87808

0.5*(rf-gs)+0.5*(lgbm-gs) 0.883526 0.87605

0.7*(rf-gs)+0.2*(lgbm-gs)+0.1*(xgb-
hy_tun)

0.887478 0.8786

Model details: https://docs.google.com/spreadsheets/d/1XyucQk70YmVgPNwti92tOgOz0snbRiawUUWy0yDvA6U/edit?usp=sharing

https://github.com/hyperopt/hyperopt
https://docs.google.com/spreadsheets/d/1XyucQk70YmVgPNwti92tOgOz0snbRiawUUWy0yDvA6U/edit?usp=sharing


THANK YOU


